7/

DISCRETE CONVOLUTION
AND CORRELATION

Possibly the most important discrete Fourier transform properties are those
of convolution and correlation. This follows because the importance of the
fast Fourier transform is primarily a result of its efficiency in computing
discrete convolution or correlation. In this chapter, we examine, analytically
and graphically, the discrete convolution and correlation equations. The
relationship between discrete and continuous convolution is also explored
in detail.

7.1 DISCRETE CONVOLUTION

Discrete convolution is defined by the summation:

N~—1

ykT) = 3 x(iDhl(k — )T) (7.1

i=0
where both x(kT) and h(kT) are periodic functions with period N,
x(kT) = x[(k + rN)T]
h(kT) = hl(k + rN)T)
For convenience of notation. discrete convolution is normally written as
YkT) = x(KT) * h(kT) (7.3)

To examine the discrete convolution equation, consider the illustra-
tions of Fig. 7.1. Both functions x(kT) and h(kT) are periodic with period

r:(),il,iz,... (72)
2

r=20, =1, £2,

118

Sec. 7.2 Graphical Interpretation of Discrete Convolution 119

b xm | hikT)

.0 /’f\n\ﬂtk‘? Lot Bt by,

o T 2T 3T a1 g T 27 37 a7 kT

(a) (b)

Figure 7.1 Example sampled waveforms to be convolved discretely.

N = 4. From Eq. (7.1), functions x(iT) and h{(k — i)T] are required. Function
h(—iT) is the image of A(iT) about the ordinate axis, as illustrated in Fig.
7.2(a); function A[{(k — £7T] is simply the function h(—iT) shifted by the
amount AT. Figure 7.2(b) illustrates h[(k — )T] for the shift 27. Equation
(7.1) is evaluated for each kT shift by performing the required multiplications
and additions.
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Figure 7.2 Graphical description of discrete convolution shifting operation.

7.2 GRAPHICAL INTERPRETATION OF DISCRETE
CONVOLUTION

The discrete convolution process is illustrated graphically in Fig. 7.3. Sample
values of x(kT) and h(kT) are denoted by dots and crosses, respectively.
Figure 7.3(a) illustrates the desired computation for k = 0. The value of
each dot is multiplied by the value of the cross that occurs at the same
abscissa value; these products are summed over the N = 4 discrete values
indicated. Computation of Eq. (7.1) is graphically evaluated for £ = 1 in
Fig. 7.3(b); multiplication and summation is over the N points indicated.
Figures 7.3(c) and (d) illustrate the convolution computation for & = 2 and
k = 3, respectively. Note that for k = 4 [Fig. 7.3(e)]. the terms multiplied
and summed are identical to those of Fig. 7.3(a). This is expected because
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Figure 7.3 Graphical illustration of discrete convolution.
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both x(kT) and h(kT) are periodic with a period of four terms. Therefore,
y(kT)y = yl(k + rN)T] r=0, =1, £2, ... (7.4)

Steps for graphically computing the discrete convolution differ from
those of continuous convolution only in that integration is replaced by sum-
mation. For discrete convolution, these steps are (1) folding, (2) displace-
ment or shifting, (3) multiplication, and (4) summation. As in the convolution
of continuous functions, cither the sequence v(AT) or (kT can be selected
for displacement. Lquation (7.1) can be written equivalently as

N -1

y(kT) = > xltk — DTIAGT) (7.5)

i=0

7.3 RELATIONSHIP BETWEEN DISCRETE
AND CONTINUOUS CONVOLUTION

If we only consider periodic functions represented by equally spaced impulse
functions, discrete convolution relates identically to its continuous equiv-
alent. This follows because, as we show in Appendix A (Eq. A.14), contin-
uous convolution is well-defined for impulse functions.

The most important application of discrete convolution is not to sam-
pled periodic functions but rather to approximate the continuous convolu-
tions of general waveforms. For this reason, we will now explore in detail
the relationship between discrete and continuous convolution.

Discrete Convolution of Finite-Duration Waveforms

Consider the functions x(¢) and A(t), as illustrated in Fig. 7.4(a). We
wish to convolve these two functions both continuously and discretely and
to compare these results. Continuous convolution y(¢) of the two functions
is also shown in Fig. 7.4(a). To evaluate the discrete convolution, we sample
both x(¢) and k() with sample interval T and we assume that both sample
functions are periodic with period N. As illustrated in Fig. 7.4(b), the period
has been chosen as N = 9 and both x(kT) and h(kT) are represented by P
= Q = 6 samples; the remaining samples defining a period are set to zero.
Figure 7.4(b) also illustrates the discrete convolution y(kT) for the period N
= 9; for this choice of N, the discrete convolution is a very poor approxi-
mation of the continuous case because the periodicity constraint results in
an overlap of the desired periodic output. That is, we did not choose the
period sufficiently large so that the convolution result of one period would
not interfere or overlap the convolution result of the succeeding period. It
is obvious that if we wish the discrete convolution to approximate continuous
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Figure 7.4 Relationship between discrete and continuous convolution: finite-du-
ration waveforms.

convolution, then it is necessary that the period be chosen so that there is
no overlap.
Choose the period according to the relationship

N=P+ Q-1 (7.6)
This situation is illustrated in Fig. 7.4(c), where N = P + 0 -1=11.
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Note that for this choice of N there is no overlap in the resulting convolution.
Equation (7.6) is based on the fact that the convolution of a function rep-
resented by P samples and a function represented by Q samples is a function
described by P + Q — 1 samples.

There is no advantage in choosing N > P + Q — I; as shown in Fig.
7.4(d), for N = 15, the nonzero values of the discrete convolution are iden-
tical to those of Fig. 7.4(c). As long as N is chosen according to Eq. (7.6),
discrete convolution results in a periodic function, where cach period ap-
proximates the continuous convolution results.

Figure 7.4(c) illustrates the fact that discrete convolution results are
scaled differently than that of continuous convolution. This scaling constant
is T; modifying the discrete convolution Eq. (7.1), we obtain

N-1

YkT) = T 3 x(iDh[(k — )T) (7.7)

i=0

The relationship of Eq. (7.7) is simply the continuous convolution integral
for time-limited functions evaluated by rectangular integration. Thus, for
finite-length time functions, discrete convolution approximates continuous
convolution within the error introduced by rectangular integration. As il-
lustrated in Fig. 7.4(e), if the sample interval T is made sufficiently small,
then the error introduced by the discrete convolution Eq. (7.7) is negligible.

Example 7.1 Circular Convolution

Discrete convolution yields periodic results because of the periodicity of the func-
tions being convolved. This periodicity gives rise to what is commonly called circular
convolution. Figure 7.5 illustrates this concept.

In Figure 7.5(a), we show two example discrete periodic waveforms to be
convolved. For the shift k = 2, Fig. 7.5(b) illustrates the appropriate folding and
shifting operations. Multiplication and addition over the N = 8 points of the period
yield the convolution results for k = 2. An alternate way of displaying the discrete
convolution of Fig. 7.5(b) for shift k = 2 is shown in Fig. 7.5(c). The rings represent
one period of the two periodic functions; the inner ring is 4(iT) and is the function
being shifted. As illustrated, the function is set for a shift of k = 2. The outer ring
corresponds to the function x(iT). Appropriate values to be multiplied are adjacent
to each other. These multiplied results are then summed around the circle (i.e., over
one period).

The inner ring is turned for each shift of k. As the ring is turned, it returns to
its original position every eight shifts. Hence, the same values will be computed.
This corresponds to the periodic convolution results discussed previously. Figure
7.5(c) can also be used to illustrate the problem of overlap. As the inner ring turns,
there must be a sufficient number of zero values in the outer ring so that a convolution
value is not computed, which is a function of both ends of the data used to form the
outer ring. If sufficient zeros are appended to the nonzero sample values of each
function to be convolved, then the finite-duration convolution result does not overlap
with the following period.




124 Discrete Convolution and Correlation Chap. 7

xiT) | nim
4 . 4+
3 . 3+ O
2 . 24 e} o)
1le

(a)

o4

on
o4
w4
Lk 3
¢
w4
<)

N

Figure 7.5 Graphical illustration of circular convolution.

Discrete Convolution of an Infinite- and a Finite-
Duration Waveform

The previous example considered the case for which both x(kT) and
h(kT) were of finite duration. Another case of interest is that where only
one of the time functions to be convolved is finite. To explore the relationship
of the discrete and continuous convolution for this case, consider the illus-
trations of Fig. 7.6. As illustrated in Fig. 7.6(a), function h(¢) is assumed to
be of finite duration and x() of infinite duration: convolution of these two
functions is shown in Fig. 7.6(b). Because the discrete convolution requires
that both the sampled functions x(kT) and h(kT) be periodic, we obtain the
illustrations of Fig. 7.6(c); period N has been chosen [Figs. 7.6(a) and (c)].
For x(kT) infinite in duration, the imposed periodicity introduces what is
known as an end effect.

Compare the discrete convolution of Fig. 7.6(d) and the continuous
convolution [Fig. 7.6(b)]. As illustrated, the two results agree reasonably
well, with the exception of the first 0 — 1 samples of the discrete convo-
lution.. To establish this fact more clearly, consider the illustrations of Fig.
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Figure 7.6 Relationship between discrete and continuous convolution: finite- and
infinite-duration waveforms.

7.7. We show only one period of x(iT) and A[(5 — /)T]. To compute the
discrete convolution, Eq. (7.1), for this shift, we multiply those samples of
x(iT) and A[(5 — §)T] that occur at the same time [Fig. 7.7(a)] and add. The
convolution result is a function of x(iT) at both ends of the period. Such a
condition obviously has no meaningful interpretation in terms of the desired
continuous convolution. Similar results are obtained for each shift value until
the Q points of h(iT) are shifted by Q — 1, that is, the end effect exists until
shift k = 0 — 1.

Note that the end effect does not occur at the right end of the N sample
values; functions A(iT) for the shift k = N — 1 (therefore maximum shift)
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(b) Figure 7.7 Illustration of the end effect.

and x(iT) are illustrated in Fig. 7.7(b). Multiplication of those values of x(iT)
apd Al(N — 1 — DT] that occur at the same time and subsequent addition
yield the desired convolution; the result is only a function of the correct
values of x(iT).

If the sample interval T is chosen sufficiently small, then the discrete
gonvolutlon for this example class of functions closely approximate the con-
tinuous convolution except for the end effect.

Summary

We have emphasized the point that discrete convolution is defined only
for pf:rlodlc'functlons. However, as illustrated graphically, the implications
of this requirement are negligible if at least one of the functions to be con-
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volved is of finite duration. For this case, discrete convolution is approxi-
mately equivalent to continuous convolution where the differences in the
two methods are due to rectangular integration and to the end effect.

In general, it is impossible to discretely convolve two functions of
infinite duration.

The convolution waveform illustrated could have been computed
equivalently by means of the convolution theorem. Recall that the discrete
convolution of Eq. (7.1) was defined in such a manner that those functions
being convolved were assumed (o be periodic. The underlying reason for
this assumption is to cnable the discrete convolution theorem, Eq. (6.50),
to hold. If we compute the discrete Fourier transform of each of the periodic
sequences x(kT) and h(kT), multiply the resulting transforms, and then com-
pute the inverse discrete Fourier transform of this product, we obtain iden-
tical results to those illustrated. As is discussed in Chapter 10, it is normally
faster computationally to use the discrete Fourier transform to compute the
discrete convolution if the FFT is employed.

7.4 GRAPHICAL INTERPRETATION OF DISCRETE
CORRELATION

Discrete correlation is defined as

N-1

2kT) = 3 x(Dhl(k + DT] (7.8)

i=0
where x(kT), h(kT), and z(kT) are periodic functions.
2(kT) = z[(k + rN)T] r=0, =1, £2,...
x(kT) = x[(k + rN)T] r=0, =1, £2,... (7.9)
h(kT) = h[(k + rN)T] r=0, =1, £2,...

As in the continuous case, discrete correlation differs from convolution
in that there is no folding operation. Hence, the remaining rules for dis-
placement, multiplication, and summation are performed exactly as for the
case of discrete convolution.

To illustrate the process of discrete correlation or lagged products, as
it sometimes is referred, consider Fig. 7.8. The discrete functions to be
correlated are shown in Fig. 7.8(a). According to the rules for correlation,
we shift, multiply, and sum, as illustrated in Figs. 7.8(b), (c), and (d), re-
spectively. Compare with the results of Ex. 4.8. In Chapter 10, we discuss
the application of the FFT for efficient computation of Eq. (7.8).
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Figure 7.8 Graphical illustration of discrete correlation.
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PROBLEMS
7.1. Let
x(kT) = e KT k=20,1,2,3
=0 k =4,5 ..., N
= x[(k + rN)T] r=20,=x1, x£2
and
kT I k 0, 1.2
0 A RIS U \

= hl(k + rN)T] r=0, =1, x2,...

With T = 1, graphically and analytically determine x(kT) * h(kT). Choose N
less than, equal to, and greater than Eq. (7.6).

Consider the continuous functions x(¢) and h(1), as illustrated in Fig. 4.14(a).
Sample both functions with sample interval T = T,/4 and assume both sample
functions are periodic with period N. Choose N according to relationship of
Eq. (7.6). Determine x(kT) * h(kT) both analytically and graphically. Inves-
tigate the results of an incorrect choice of N. Compare results with continuous
convolution results.

Repeat Problem 7.2 for Figs. 4.14(b) and (c).

Refer to Fig. 7.6. Let x(¢) be defined as illustrated in Fig. 7.6(a). Function A(r)

is given as
(a) A(r) = d(2)
(b) h(t) = d(r) + 6<1* %)
(¢) h(t) =0 1 <0
=1 0<r<%
=0 l<1<l
- 2
3
=1 I<z<5
3
=90 I>;

Following Fig. 7.6, graphically determine the discrete convolution in each case.
Compare the discrete and continuous convolution in each case. Investigate
the end effect in each case.

It is desired to discretely convolve a finite-duration and an infinite-duration
waveform. Assume that a hardware device is to be used that is limited in
capacity to N sample values of each function. Describe a procedure that allows
one to perform successive N-point discrete convolutions and combine the two
to eliminate the end effect. Demonstrate your concept by repeating the illus-
trations of Fig. 7.6 for the case NT = 1.5. Successively apply the developed
technique to determiue the discrete convolution y(kT) for 0 < kT = 3.






